2020-05-27 09:45:43

学会这些 Python 美图技巧,就等着女朋友夸你吧

25 / 0 / 0 / 0

一、前言

Python中有许多用于图像处理的库,像是Pillow,或者是OpenCV。而很多时候感觉学完了这些图像处理模块没有什么用,其实只是你不知道怎么用罢了。今天就给大家带了一些美图技巧,让你的图美翻全场,朋友圈赞不绝口,女朋友也夸你,富贵你好厉害啊!

二、模块安装

我们主要使用到OpenCV和Pillow,另外我们还会使用到wordcloud和paddlehub,我们先安装一下:

pip install opencv-python  
pip install pillow  
python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple  
pip install -i https://mirror.baidu.com/pypi/simple paddlehub  
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ myqr  

另外我使用的Python环境是3.7,知道这些我们就可以开始进行我们的美图之旅了。

三、图片美化

1、祛痘

还在为痘痘犯难,不敢拍照吗?有了这个你就不用怕了(虽然有p图软件,但是大家不要揭穿我):

import cv2  
level = 22    # 降噪等级  
img = cv2.imread('girl.jpg')    # 读取原图  
img = cv2.bilateralFilter(img, level, level*2, level/2)    # 美颜  
cv2.imwrite('result.jpg', img)      

实际上,在光滑的脸蛋上,痘痘就可以视为一个噪点,而我们可以通过降噪的方式达到祛痘祛斑的效果,在OpenCV中就提供了相应的滤镜,我们只需要调用即可。原图和实现效果图对比如下:

可以看到脸上的斑明显是变少了。绅士们应该可以注意到,脖子下面的皮肤光滑了许多。不过头发细节被抹除了不少。我们可以通过调节level参数,调节效果。如果想效果更好,可以结合人脸识别,进行局部的祛痘处理。

2、词云——我不只是一张图

其实词云已经是老生常谈了,但是作美图中的姣姣者,还是有必要列出来的,因为一张词云所能包含的信息太多了:

from PIL import Image  
import numpy as np  
from wordcloud import WordCloud, ImageColorGenerator  

# 读取背景图片  
mask = np.array(Image.open('rose.png'))  

# 定义词云对象  
wc = WordCloud(  
    # 设置词云背景为白色  
    background_color='white',  
    # 设置词云最大的字体  
    max_font_size=30,  
    # 设置词云轮廓  
    mask=mask,  
    # 字体路径,如果需要生成中文词云,需要设置该属性,设置的字体需要支持中文  
    #font_path='msyh.ttc'  
)  
# 读取文本  
text = open('article.txt', 'r', encoding='utf-8').read()  
# 生成词云  
wc.generate(text)  
# 给词云上色  
wc = wc.recolor(color_func=ImageColorGenerator(mask))  
# 保存词云  
wc.to_file('result.png')  

其中article.txt为我们的词云的文本素材,而rose.png则是词云轮廓(该图片背景应该为严格的白色或者透明),原图和实现效果如下:

还是非常美的。更多详细内容可以参考https://blog.csdn.net/ZackSock/article/details/103517841。

3、风格迁移——努力变成你喜欢的样子

风格迁移,顾名思义就是将某一张图片的风格迁移到另一张图片上。比如我拍了一张白天的图片,但是我想要一张夜景的图片,那我们该怎么做呢?当然是等到晚上再拍了,不过除了这个方法,我们还可以下载一张夜景图片,将夜景效果迁移到我们的原图上。

风格迁移的实现需要使用深度学习才能实现,但是像我这样的菜鸡肯定是不会深度学习的啦,所以我们直接使用paddlehub中已经实现好的模型库:

import cv2  
import paddlehub as hub  
# 加载模型库  
stylepro_artistic = hub.Module(name="stylepro_artistic")  
# 进行风格迁移  
im = stylepro_artistic.style_transfer(  
    images=[{  
            # 原图  
            'content': cv2.imread("origin.jpg"),  
            # 风格图  
            'styles': [cv2.imread("style.jpg")]  
        }],  
    # 透明度  
    alpha = 0.1  
)  
# 从返回的数据中获取图片的ndarray对象  
im = im[0]['data']  
# 保存结果图片  
cv2.imwrite('result.jpg', im)  

原图风格图和效果图如下:

左边是原图,中间是风格图,右边为效果图。上面的效果还算可以,但是不是每次都怎么成功,还是要多试试。

4、图中图——每一个像素都是你

这个相比上面的要复杂一些,我们需要准备图库,将这些图作素材,然后根据图片某个区域的主色调进行最适当的替换,代码如下:

import os  
import cv2  
import numpy as np  

def getDominant(im):  
    """获取主色调"""  
    b = int(round(np.mean(im[:, :, 0])))  
    g = int(round(np.mean(im[:, :, 1])))  
    r = int(round(np.mean(im[:, :, 2])))  
    return (b, g, r)  

def getColors(path):  
    """获取图片列表的色调表"""  
    colors = []  

    filelist = [path + i for i in os.listdir(path)]  
    for file in filelist:  
        im = cv2.imdecode(np.fromfile(file, dtype=np.uint8), -1)  
        dominant = getDominant(im)  
        colors.append(dominant)  
    return colors  

def fitColor(color1, color2):  
    """返回两个颜色之间的差异大小"""  
    b = color1[0] - color2[0]  
    g = color1[1] - color2[1]  
    r = color1[2] - color2[2]  
    return abs(b) + abs(g) + abs(r)  

def generate(im_path, imgs_path, box_size, multiple=1):  
    """生成图片"""  

    # 读取图片列表  
    img_list = [imgs_path + i for i in os.listdir(imgs_path)]  

    # 读取图片  
    im = cv2.imread(im_path)  
    im = cv2.resize(im, (im.shape[1]*multiple, im.shape[0]*multiple))  

    # 获取图片宽高  
    width, height = im.shape[1], im.shape[0]  

    # 遍历图片像素  
    for i in range(height // box_size+1):  
        for j in range(width // box_size+1):  

            # 图块起点坐标  
            start_x, start_y = j * box_size, i * box_size  

            # 初始化图片块的宽高  
            box_w, box_h = box_size, box_size  

            box_im = im[start_y:, start_x:]  
            if i == height // box_size:  
                box_h = box_im.shape[0]  
            if j == width // box_size:  
                box_w = box_im.shape[1]  

            if box_h == 0 or box_w == 0:  
                continue  

            # 获取主色调  
            dominant = getDominant(im[start_y:start_y+box_h, start_x:start_x+box_w])  

            img_loc = 0  
            # 差异,同主色调最大差异为255*3  
            dif = 255 * 3  

            # 遍历色调表,查找差异最小的图片  
            for index in range(colors.__len__()):  
                if fitColor(dominant, colors[index]) < dif:  
                    dif = fitColor(dominant, colors[index])  
                    img_loc = index  

            # 读取差异最小的图片  
            box_im = cv2.imdecode(np.fromfile(img_list[img_loc], dtype=np.uint8), -1)  

            # 转换成合适的大小  
            box_im = cv2.resize(box_im, (box_w, box_h))  

            # 铺垫色块  
            im[start_y:start_y+box_h, start_x:start_x+box_w] = box_im  

            j += box_w  
        i += box_h  

    return im  

if __name__ == '__main__':  

    # 获取色调列表  
    colors = getColors('表情包/')  
    result_im = generate('main.jpg', '表情包/', 50, multiple=5)  
    cv2.imwrite('C:/Users/zaxwz/Desktop/result.jpg', result_im)  

关于实现,我后续会写文章详细分析。我们看看效果图:

图片我们还是可以看出人物的,但是某些地方颜色不太对,这就是根据我们图库来的了。我们放大图片就能看到上面几百张小图片。(当然你放大上面的图是看不到的,因为分辨率太低)

5、切换背景——带你去旅行

最近大家都宅家里,照片拍了不少,可惜背景全是沙发。遇到我就是你女朋友的福气,看我如何10行代码换图片背景:

from PIL import Image  
import paddlehub as hub  
# 加载模型  
humanseg = hub.Module(name='deeplabv3p_xception65_humanseg')  
# 抠图  
results = humanseg.segmentation(data={'image':['xscn.jpeg']})  
# 读取背景图片  
bg = Image.open('bg.jpg')  
# 读取原图  
im = Image.open('humanseg_output/xscn.png').convert('RGBA')  
im.thumbnail((bg.size[1], bg.size[1]))  
# 分离通道  
r, g, b, a = im.split()  
# 将抠好的图片粘贴到背景上  
bg.paste(im, (bg.size[0]-bg.size[1], 0), mask=a)  
bg.save('xscn.jpg')  

下面看看我们的效果:

6、九宫格——一张照片装不下你的美

很多人发照片都喜欢发九宫格,但是一般又没那么多照片,这个时候就需要用表情包占位了。对于技术宅,这种不合理的方式是绝不容许的,于是我们写下如下代码:

from PIL import Image  
# 读取图片  
im = Image.open('xscn.jpeg')  
# 宽高各除 3,获取裁剪后的单张图片大小  
width = im.size[0]//3  
height = im.size[1]//3  
# 裁剪图片的左上角坐标  
start_x = 0  
start_y = 0  
# 用于给图片命名  
im_name = 1  
# 循环裁剪图片  
for i in range(3):  
    for j in range(3):  
        # 裁剪图片并保存  
        crop = im.crop((start_x, start_y, start_x+width, start_y+height))  
        crop.save(str(im_name) + '.jpg')  
        # 将左上角坐标的 x 轴向右移动  
        start_x += width  
        im_name += 1  
    # 当第一行裁剪完后 x 继续从 0 开始裁剪  
    start_x = 0  
    # 裁剪第二行  
    start_y += height  

我们执行上面的代码后,就能生成名为1~9的图片,这些图片就是我们的九宫格图片,下面看看测试效果:

在这里插入图片描述

不得不说,小松菜奈是真的美。

7、图片二维码——冰冷的图里也饱含深情

有话想说又不敢说?来试试二维码吧,小小的图饱含深情:

from MyQR import myqr  
myqr.run(  
    words='http://www.baidu.com',    # 包含信息  
    picture='lbxx.jpg',            # 背景图片  
    colorized=True,            # 是否有颜色,如果为False则为黑白  
    save_name='code.png'    # 输出文件名  
)  

效果图如下:

在这里插入图片描述

因为上面的二维码经过我的特殊处理,在你扫码的时候会发现上面是码中码中码,要扫很多遍才能获得最后结果,大家可以发挥自己的想象力,做出点有趣的东西。

看到这里,我猜会有童鞋问「我差不多已经学会了,请问女朋友在哪里领?」 

PS: 如本文对您有疑惑,可加QQ:1752338621 进行讨论。

0 条评论

0
0
官方
微信
官方微信
Q Q
咨询
意见
反馈
返回
顶部